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E: Eszett
Problem Author: Paul Wild

Problem
Given an uppercase string, find all of its transformations into lowercase, where each SS may transform
to either ss or B (approximating the German ‘ß’). The string contains at most three S.

Solution

• If the string contains SSS, there are three solutions, replacing SSS with sss, sB and Bs respectively.
• Otherwise, if the string contains SS, there are exactly two solutions, one with ss and one with B.
• Otherwise, the only solution is the lowercase version of the string.
• Sample Implementation in Python:

a = input().lower()
if a.find('sss') != -1:

print(a.replace('sss', 'sB'))
print(a.replace('sss', 'Bs'))

elif a.find('ss') != -1:
print(a.replace('ss', 'B'))

print(a)
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G: German Conference for Public Counting
Problem Author: Paul Wild

Problem
Count the number of signs with digits needed to display all numbers from 0 to n.

Example (n = 15)

1 5 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0

We need 11 signs: 0 , 1 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9

Solution

• For each digit, find the number in the range that uses the most copies of that digit.
• For each digit from 1 to 9:

• Find the longest repdigit (number made up only of that digit) not exceeding n.
• Add its length to the result.

• For the digit 0:
• We always need at least one sign for the end of the countdown.
• The smallest number to use two signs is 100, the smallest to use three signs is 1000, . . .
• Find the largest power of 10 not exceeding n and add the appropriate number of 0 signs.
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M: Mischievous Math
Problem Author: Paul Wild

Problem
Given an integer d , find integers a, b and c such that it is impossible to write d as the result of a
mathematical expression involving a, b and c and using the four basic operations +, −, ×, and ÷.
All numbers must be distinct and from the range {1, . . . , 100}.

Solution

• If we put a = 1, b = 2 and c = 3, then the largest representable number is 9 = (1 + 2) × 3.
• Therefore, if d ≥ 10 we simply output 1 2 3.
• Similarly, we can find a triple of numbers that works for all d ≤ 9, for example:

79 90 100 13 57 100 10 21 43

• In total, exactly 29 486 out of the
(100

3
)

= 161 700 possible triples avoid all d ≤ 9.
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L: Loop Invariant
Problem Author: Michael Zündorf

Problem
Given a valid balanced parentheses sequence (BPS) s, find a rotation of s that is a different valid
BPS (if it exists).

Example
()(())() → (())()()

Solution

• Insight 1: We need to break at a point where the part on the left is a valid BPS. Otherwise, there
will be an unmatched closing parenthesis to the right of the break: ()(())() → ())()()(

• Split s at each possible break point into words: ()(())() → () (()) ()

• Insight 2: There is a solution if and only if there are (at least) two different words.
• Thus, breaking at the earliest possible point gives a valid solution (if there exists one).
• Break at the earliest possible point and check if the result s ′ is different from s. Output s ′ if yes

and “unique” otherwise.
Time complexity: O(|s|)
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D: DnD Dice
Problem Author: Paul Wild

Problem
Given some dice with various numbers of sides, output the possible sums of dice rolls in order of
probability.

Solution

• Use dynamic programming, adding the dice one by one to the current probability distribution.
• If the current distribution is π and we add a k-sided die, then the new distribution π′ is

π′(n) = 1
k (π(n − 1) + · · · + π(n − k)).

• Pitfall: beware of integer overflow when using counts instead of probabilities.
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D: DnD Dice
Problem Author: Paul Wild

Easier Solution

• Notice that the probability distribution is always symmetrical, e.g. for two d4 and one d6:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15
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C
o
u
n
t

• This means we can find the final order without computing any probabilities!
• The solution is easiest to construct by starting at the extremes and taking turns moving inwards.
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I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

Problem
Given at most 2 · 105 frogs with integral positions, and a list of at most 106 frog-IDs (events). For
each ID in the list, move the corresponding frog to the next free position.

Solution

• Store for each position whether it is occupied or not in an array. Only positions up to 1.2 · 106 are
relevant.

• Now, simulate the events: For a jump of frog i , currently at position p, scan the “occupied”-array
starting at p and seek the next free position.

• Time complexity? O(n2) This is too slow (unless very very very optimised. . . )
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I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

Problem
Given at most 2 · 105 frogs with integral positions, and a list of at most 106 frog-IDs (events). For
each ID in the list, move the corresponding frog to the next free position.

Solution

• Maintain the current positions of each frog and an ordered set S of currently free positions.

• Now the events can be simulated quickly. For a jump of frog i , currently at position p:
• find min{p′ ∈ S : p < p′} in O(log |S|) using operations from the standard library.
• update S and the position of frog i

• Total time complexity: O(n log |S|)
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C: Cosmic Commute
Problem Author: Wendy Yi

Problem
Given an undirected, unweighted graph with n ≤ 2 · 105 vertices and a set W of k wormholes, what is
the length of the shortest expected path from s to t?

• By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
• You can use teleportation at most once.

Solution

• If you enter wormhole w , the expected distance from s to t is

distw = dist(s, w) + 1
k − 1

∑
w′∈W \{w}

dist(w ′, t) = dist(s, w) + 1
k − 1(S − dist(w , t))

with S =
∑

w′∈W dist(w ′, t)
• Compute dist(s, w) and dist(w , t) for each wormhole w and sum S using two BFS from s and t.
• Determine the wormhole you should enter to minimize the expected distance.



C: Cosmic Commute
Problem Author: Wendy Yi

Problem
Given an undirected, unweighted graph with n ≤ 2 · 105 vertices and a set W of k wormholes, what is
the length of the shortest expected path from s to t?

• By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
• You can use teleportation at most once.

Solution

• If you enter wormhole w , the expected distance from s to t is

distw = dist(s, w) + 1
k − 1

∑
w′∈W \{w}

dist(w ′, t)

= dist(s, w) + 1
k − 1(S − dist(w , t))

with S =
∑

w′∈W dist(w ′, t)
• Compute dist(s, w) and dist(w , t) for each wormhole w and sum S using two BFS from s and t.
• Determine the wormhole you should enter to minimize the expected distance.



C: Cosmic Commute
Problem Author: Wendy Yi

Problem
Given an undirected, unweighted graph with n ≤ 2 · 105 vertices and a set W of k wormholes, what is
the length of the shortest expected path from s to t?

• By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
• You can use teleportation at most once.

Solution

• If you enter wormhole w , the expected distance from s to t is

distw = dist(s, w) + 1
k − 1

∑
w′∈W \{w}

dist(w ′, t) = dist(s, w) + 1
k − 1(S − dist(w , t))

with S =
∑

w′∈W dist(w ′, t)

• Compute dist(s, w) and dist(w , t) for each wormhole w and sum S using two BFS from s and t.
• Determine the wormhole you should enter to minimize the expected distance.



C: Cosmic Commute
Problem Author: Wendy Yi

Problem
Given an undirected, unweighted graph with n ≤ 2 · 105 vertices and a set W of k wormholes, what is
the length of the shortest expected path from s to t?

• By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
• You can use teleportation at most once.

Solution

• If you enter wormhole w , the expected distance from s to t is

distw = dist(s, w) + 1
k − 1

∑
w′∈W \{w}

dist(w ′, t) = dist(s, w) + 1
k − 1(S − dist(w , t))

with S =
∑

w′∈W dist(w ′, t)
• Compute dist(s, w) and dist(w , t) for each wormhole w and sum S using two BFS from s and t.

• Determine the wormhole you should enter to minimize the expected distance.
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• By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
• You can use teleportation at most once.

Solution

• It might be better to directly go from s to t without using any wormhole.

• Output the minimum min{dist(s, t), minw∈W {distw }}.

Running time: O(n + m)
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B: Balloon Darts
Problem Author: Paul Jungeblut

Problem
Given n points in the plane, determine if k = 3 lines are sufficient to cover all points.

Solution

• If we have at most k points the answer is obviously Yes.
• If we select k + 1 points, one line has to go through two of those points.
• Given k and n > k points solve the problem recursively:

• Select k + 1 points and try all lines through two points.
• For each line remove all covered points.
• Check recursively with k − 1 and the remaining points.

• Time complexity for (k = 3): n ·
∏k

i=1

(i+1
2

)
= 18 · n
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B: Balloon Darts
Problem Author: Paul Jungeblut

More Observations

• There must be a line which covers at least a third of all points.

• There must be a line which covers at least half of all remaining points.
• There must be a line which covers all remaining points.

Solution 2

• Recursively select a random line through two points.
• At step k check if the chosen line covers 1

k of all points.
Yes: recursively continue with k − 1 and the remaining points.
No: try another line or abort after sufficient many tries (∼ 5 · k).

• Time complexity for (k = 3): n · 5 · k! = 30 · n
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F: Freestyle Masonry
Problem Author: Michael Zündorf

Problem
Given the height field representing a wall, decide if you can add 2 × 1 blocks to create a wall of width
exactly w and height exactly h.

Solution

• Given a subgraph of a w × h grid graph, decide if it has a perfect matching
• Since the graph is a grid i.e. bipartite this can be done in w · h ·

√
w · h

⇒ This is much too slow
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Problem
Given the height field representing a wall, decide if you can add 2 × 1 blocks to create a wall of width
exactly w and height exactly h.

Solution?

• Given a subgraph of a w × h grid graph, decide if it has a perfect matching
• Since the graph is a grid i.e. bipartite this can be done in w · h ·

√
w · h

⇒ This is much too slow



F: Freestyle Masonry
Problem Author: Michael Zündorf

Solution

• There is a greedy strategy which finds a perfect matching if one exists

• Go from left to right
• Place as many 1 × 2 blocks from the bottom to the top as fit in the current column
• If needed place 2 × 1 blocks on the top which go into the next column

• To simulate this efficiently, only store the height of the lowest brick coming from the left
• This value either increases or decreases by 1 if we go to the next column
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K: Kaldorian Knights
Problem Author: Marcel Wienöbst

Problem

Given a1, . . . , ak , compute how many permutations of (1, . . . , n) do not have 1, 2, . . . ,
∑l

i=1 ai (in
some order) in the first

∑l
i=1 ai places (for some l = 1, . . . k).

Solution

• Denote the number of such permutations by p(n, k) and let A(i) =
∑i

j=1 aj .
• Following the definition, we can count p(n, k) as the number of all permutations minus the

forbidden ones.
• To avoid subtracting forbidden permutations more than once, we use a recursive formulation:

p(n, k) = n! −
k∑

i=1

(n − A[i ])! × p(A[i ], i − 1)

• p(A[i ], i − 1) counts the forbidden prefixes of length A[i ], which do not themselves contain a
shorter forbidden prefix.

• The recursion can be evaluated using dynamic programming in time O(k2).
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J: Japanese Lottery
Problem Author: Michael Zündorf

Problem
Given a game of Amida-kuji, i.e. k legs and some horizontal bars which change over time, decide how
many horizontal bars you need to remove to connect the ith start to the ith end.

1 2 3 4 5

1 2 3 4 5



J: Japanese Lottery
Problem Author: Michael Zündorf

Solution

• The game state can be represented by a permutation.
• Adding/removing a bar always changes the number of cycles in the permutation by 1.
• We want to build the identity permutation, which has k cycles.

• There is always a bar whose addition/removal increases the number of cycles.
⇒ The answer is k minus the number of cycles.
• Notice that the actual layout of the bars is irrelevant.
⇒ We only need to maintain the current permutation (for example with a Segment Tree).
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H: Highway Combinatorics
Problem Author: Michael Zündorf

Problem
Find a subgraph of a 2 × 200 grid which has exactly n perfect matchings modulo 109 + 7.

Observations

• Some edges are contained in every matching
• The remaining edges are matched in grids of the form 2 × mi

• A 2 × m grid has fibonacci(m) perfect matchings
• This is equivalent to: find k Fibonacci numbers,

• whose sum is less than 200,
• whose product is congruent to n modulo 109 + 7.



H: Highway Combinatorics
Problem Author: Michael Zündorf

Problem
Find a subgraph of a 2 × 200 grid which has exactly n perfect matchings modulo 109 + 7.

Observations

• Some edges are contained in every matching
• The remaining edges are matched in grids of the form 2 × mi

• A 2 × m grid has fibonacci(m) perfect matchings

• This is equivalent to: find k Fibonacci numbers,
• whose sum is less than 200,
• whose product is congruent to n modulo 109 + 7.



H: Highway Combinatorics
Problem Author: Michael Zündorf

Problem
Find a subgraph of a 2 × 200 grid which has exactly n perfect matchings modulo 109 + 7.

Observations

• Some edges are contained in every matching
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Problem

• Find a (multi)set of positive Integers S, such that
•

∑
i∈S i < 200, and

•
∏

i∈S fib(i) ≡ n mod 109 + 7.

Solution

• Meet in the Middle

• Repeat a times: Randomly pick a multiset S1 with
∑

i∈S1
i < 100 and store it indexed by

∏
i∈S1

fib(i)
• Repeat b times: Randomly pick a multiset S2 with

∑
i∈S2

i < 100 and check if some S1 with∏
i∈S1

fib(i) ≡ n ·
(∏

i∈S2
fib(i)

)−1
has been stored

• If yes, we found a solution because
∏

i∈S1∪S2
fib(i) ≡ n and

∑
i∈S1∪S2

i < 200

• For a = b = 106 we test (up to) 1012 combinations, but there are only 109 + 7 possible outcomes
⇒ We have to be really unlucky to not find a combination for some fixed n
• Special case: n = 0, find a graph without a perfect matching
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Problem
Find the number of winning moves in a block stacking game:

• There are multiple stacks of blocks.
• Players alternate placing blocks on top of these.
• The first player unable to move loses.
• Each block must fit strictly within the one below it.
• There are three shapes with blocks of any integer size: circles, triangles, squares.
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Subproblem
Given two blocks, determine if one of them fits inside the other.

Solution to Subproblem

• Consider each pair of shapes ({△,□, ⃝}) separately.
• For instance, if □m is a square with side length m and ⃝n is a circle with radius n, then

□m fits inside ⃝n ⇐⇒ m <
√

2 · n.

• Similarly, for each S, T ∈ {△,□, ⃝}, there exists some αS,T such that

Sm fits inside Tn ⇐⇒ m < αS,T · n.

• These numbers can be found using high school geometry.
• Pitfall: Near misses are possible, so use extended precision (long double, BigDecimal, Decimal).
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Solution

• This is a combinatorial game where for each stack we only care about its topmost block.

• Use the Sprague-Grundy theorem to assign each block B a Grundy value G(B).
• By careful analysis and/or dynamic programming we can find closed forms:

G(△n) = n − 1 G(□n) = ⌊(
√

6 −
√

2)n⌋ G(⃝n) =

{
2, if n = 1
⌊
√

3n⌋, otherwise

• A position is losing iff the bitwise XOR of Grundy values of the stacks is 0.
• For each stack, compute the Grundy value needed to create a losing position.
• For each shape, check whether a block with that Grundy value exists and constitutes a legal move.
• Total runtime: O(n).
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Random facts

Jury work

• 275 commits

• 773 secret test cases (≈ 59.5 per problem)
• 133 jury solutions
• The minimum number of lines the jury needed to solve all problems is

20 + 13 + 19 + 7 + 2 + 6 + 2 + 21 + 18 + 19 + 10 + 3 + 1 = 141

On average 10.8 lines per problem
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