GCPC 2023 Presentation of Solutions

June 17, 2023

- Paul Jungeblut

Karlsruhe Institute of Technology

- Felicia Lucke

Fribourg University CH, CPUlm

- Jannik Olbrich

Ulm University, CPUlm

- Christopher Weyand

Karlsruhe Institute of Technology

- Marcel Wienöbst

University of Lübeck, CPUlm

- Paul Wild

Friedrich-Alexander University
Erlangen-Nürnberg, CPUlm

- Wendy Yi

Karlsruhe Institute of Technology

- Michael Zündorf

Karlsruhe Institute of Technology, CPUIm

GCPC 2023 Test Solvers

- Rudolf Fleischer

Heinrich-Heine-University Düsseldorf, CPUlm

- Florian Marwitz

University of Lübeck

- Michael Ruderer

Augsburg University, CPUIm

- Erik Sünderhauf

Technical University of Munich

GCPC 2023 Technical Team

- Nathan Maier

CPUIm

- Alexander Schmid

CPUIm

E: Eszett

Problem Author: Paul Wild

Problem

Given an uppercase string, find all of its transformations into lowercase, where each SS may transform to either ss or B (approximating the German ' B '). The string contains at most three S.

Problem Author: Paul Wild

Problem

Given an uppercase string, find all of its transformations into lowercase, where each SS may transform to either ss or B (approximating the German ' B '). The string contains at most three S .

Solution

- If the string contains SSS, there are three solutions, replacing SSS with sss, sB and Bs respectively.

E: Eszett

Problem Author: Paul Wild

Problem

Given an uppercase string, find all of its transformations into lowercase, where each SS may transform to either ss or B (approximating the German ' B '). The string contains at most three S.

Solution

- If the string contains SSS, there are three solutions, replacing SSS with sss, sB and Bs respectively.
- Otherwise, if the string contains SS, there are exactly two solutions, one with ss and one with B.

E: Eszett

Problem Author: Paul Wild

Problem

Given an uppercase string, find all of its transformations into lowercase, where each SS may transform to either ss or B (approximating the German ' B '). The string contains at most three S.

Solution

- If the string contains SSS, there are three solutions, replacing SSS with sss, sB and Bs respectively.
- Otherwise, if the string contains SS, there are exactly two solutions, one with ss and one with B.
- Otherwise, the only solution is the lowercase version of the string.

E: Eszett

Problem

Given an uppercase string, find all of its transformations into lowercase, where each SS may transform to either ss or B (approximating the German ' β '). The string contains at most three S.

Solution

- If the string contains SSS, there are three solutions, replacing SSS with sss, sB and Bs respectively.
- Otherwise, if the string contains SS, there are exactly two solutions, one with ss and one with B.
- Otherwise, the only solution is the lowercase version of the string.
- Sample Implementation in Python:

```
a = input().lower()
if a.find('sss') != -1:
    print(a.replace('sss', 'sB'))
    print(a.replace('sss', 'Bs'))
elif a.find('ss') != -1:
    print(a.replace('ss', 'B'))
print(a)
```


G: German Conference for Public Counting

Problem Author: Paul Wild

G: German Conference for Public Counting

Problem Author: Paul Wild

Problem

Count the number of signs with digits needed to display all numbers from 0 to n.
Example $(n=15)$

$$
\begin{aligned}
& \text { We need } 11 \text { signs: } 0,4,, 1,2,43,4,5,4,6,4,9
\end{aligned}
$$

G: German Conference for Public Counting

Problem Author: Paul Wild

Problem

Count the number of signs with digits needed to display all numbers from 0 to n.
Example $(n=15)$

$$
\begin{aligned}
& \text { We need } 11 \text { signs: } 0,4,, 1,2,4,4,4,5,7,8,9
\end{aligned}
$$

Solution

- For each digit, find the number in the range that uses the most copies of that digit.

G: German Conference for Public Counting

Problem Author: Paul Wild

Problem

Count the number of signs with digits needed to display all numbers from 0 to n.
Example $(n=15)$

We need 11 signs: $0,4,4,4,4,4,4,6,7,8,9$

Solution

- For each digit, find the number in the range that uses the most copies of that digit.
- For each digit from 1 to 9 :
- Find the longest repdigit (number made up only of that digit) not exceeding n.
- Add its length to the result.

G: German Conference for Public Counting

Problem Author: Paul Wild

Problem

Count the number of signs with digits needed to display all numbers from 0 to n.
Example ($n=15$)

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 5 & 1 & 4 \\
\hline
\end{array}
$$

We need 11 signs: $0,1,1,2,3,4,4,5,6,6,4$

Solution

- For each digit, find the number in the range that uses the most copies of that digit.
- For each digit from 1 to 9 :
- Find the longest repdigit (number made up only of that digit) not exceeding n.
- Add its length to the result.
- For the digit 0 :
- We always need at least one sign for the end of the countdown.
- The smallest number to use two signs is 100 , the smallest to use three signs is $1000, \ldots$
- Find the largest power of 10 not exceeding n and add the appropriate number of 0 signs.

M: Mischievous Math

Problem Author: Paul Wild

M: Mischievous Math

Problem Author: Paul Wild

Problem

Given an integer d, find integers a, b and c such that it is impossible to write d as the result of a mathematical expression involving a, b and c and using the four basic operations,,$+- \times$, and \div. All numbers must be distinct and from the range $\{1, \ldots, 100\}$.

M: Mischievous Math

Problem Author: Paul Wild

Problem

Given an integer d, find integers a, b and c such that it is impossible to write d as the result of a mathematical expression involving a, b and c and using the four basic operations,,$+- \times$, and \div. All numbers must be distinct and from the range $\{1, \ldots, 100\}$.

Solution

- If we put $a=1, b=2$ and $c=3$, then the largest representable number is $9=(1+2) \times 3$.

M: Mischievous Math

Problem Author: Paul Wild

Problem

Given an integer d, find integers a, b and c such that it is impossible to write d as the result of a mathematical expression involving a, b and c and using the four basic operations,,$+- \times$, and \div. All numbers must be distinct and from the range $\{1, \ldots, 100\}$.

Solution

- If we put $a=1, b=2$ and $c=3$, then the largest representable number is $9=(1+2) \times 3$.
- Therefore, if $d \geq 10$ we simply output 123 .

M: Mischievous Math

Problem Author: Paul Wild

Problem

Given an integer d, find integers a, b and c such that it is impossible to write d as the result of a mathematical expression involving a, b and c and using the four basic operations,,$+- \times$, and \div. All numbers must be distinct and from the range $\{1, \ldots, 100\}$.

Solution

- If we put $a=1, b=2$ and $c=3$, then the largest representable number is $9=(1+2) \times 3$.
- Therefore, if $d \geq 10$ we simply output 123.
- Similarly, we can find a triple of numbers that works for all $d \leq 9$, for example:

$$
\begin{array}{llllllll}
79 & 90 & 100 & 13 & 57 & 100 & 10 & 21
\end{array} 43
$$

M: Mischievous Math

Problem Author: Paul Wild

Problem

Given an integer d, find integers a, b and c such that it is impossible to write d as the result of a mathematical expression involving a, b and c and using the four basic operations,,$+- \times$, and \div. All numbers must be distinct and from the range $\{1, \ldots, 100\}$.

Solution

- If we put $a=1, b=2$ and $c=3$, then the largest representable number is $9=(1+2) \times 3$.
- Therefore, if $d \geq 10$ we simply output 123.
- Similarly, we can find a triple of numbers that works for all $d \leq 9$, for example:

$$
\begin{array}{lllllll}
79 & 90 & 100 & 13 & 57 & 100 & 10 \\
21 & 43
\end{array}
$$

- In total, exactly 29486 out of the $\binom{100}{3}=161700$ possible triples avoid all $d \leq 9$.

L: Loop Invariant

L: Loop Invariant

Problem Author: Michael Zündorf

Problem

Given a valid balanced parentheses sequence (BPS) s, find a rotation of s that is a different valid BPS (if it exists).

Example

() (()) () \rightarrow (()) () ()

Problem

Given a valid balanced parentheses sequence (BPS) s, find a rotation of s that is a different valid BPS (if it exists).

Example

() (()) () \rightarrow (()) () ()

Solution

- Insight 1: We need to break at a point where the part on the left is a valid BPS. Otherwise, there will be an unmatched closing parenthesis to the right of the break: ()(())() \rightarrow ())()()(

Problem

Given a valid balanced parentheses sequence (BPS) s, find a rotation of s that is a different valid BPS (if it exists).

Example

() (()) () $\rightarrow(())()()$

Solution

- Insight 1: We need to break at a point where the part on the left is a valid BPS. Otherwise, there will be an unmatched closing parenthesis to the right of the break: ()(())() \rightarrow ())()()(
- Split s at each possible break point into words: ()(())() \rightarrow () (()) ()

Problem

Given a valid balanced parentheses sequence (BPS) s, find a rotation of s that is a different valid BPS (if it exists).

Example

() (()) () $\rightarrow(())()()$

Solution

- Insight 1: We need to break at a point where the part on the left is a valid BPS. Otherwise, there will be an unmatched closing parenthesis to the right of the break: ()(())() \rightarrow ())()()(
- Split s at each possible break point into words: ()(())() \rightarrow () (()) ()
- Insight 2: There is a solution if and only if there are (at least) two different words.

Problem

Given a valid balanced parentheses sequence (BPS) s, find a rotation of s that is a different valid BPS (if it exists).

Example

() (()) () \rightarrow (()) () ()

Solution

- Insight 1: We need to break at a point where the part on the left is a valid BPS. Otherwise, there will be an unmatched closing parenthesis to the right of the break: ()(())() \rightarrow ())()()(
- Split s at each possible break point into words: ()(())() \rightarrow () (()) ()
- Insight 2: There is a solution if and only if there are (at least) two different words.
- Thus, breaking at the earliest possible point gives a valid solution (if there exists one).

Problem

Given a valid balanced parentheses sequence (BPS) s, find a rotation of s that is a different valid BPS (if it exists).

Example

() (()) () \rightarrow (()) () ()

Solution

- Insight 1: We need to break at a point where the part on the left is a valid BPS. Otherwise, there will be an unmatched closing parenthesis to the right of the break: ()(())() \rightarrow ())()()(
- Split s at each possible break point into words: ()(())() \rightarrow () (()) ()
- Insight 2: There is a solution if and only if there are (at least) two different words.
- Thus, breaking at the earliest possible point gives a valid solution (if there exists one).
- Break at the earliest possible point and check if the result s^{\prime} is different from s. Output s^{\prime} if yes and "unique" otherwise.

Problem

Given a valid balanced parentheses sequence (BPS) s, find a rotation of s that is a different valid BPS (if it exists).

Example

() (()) () \rightarrow (()) () ()

Solution

- Insight 1: We need to break at a point where the part on the left is a valid BPS. Otherwise, there will be an unmatched closing parenthesis to the right of the break: ()(())() \rightarrow ())()()(
- Split s at each possible break point into words: ()(())() \rightarrow () (()) ()
- Insight 2: There is a solution if and only if there are (at least) two different words.
- Thus, breaking at the earliest possible point gives a valid solution (if there exists one).
- Break at the earliest possible point and check if the result s^{\prime} is different from s. Output s^{\prime} if yes and "unique" otherwise.

Time complexity: $\mathcal{O}(|s|)$

D: DnD Dice
Problem Author: Paul Wild

Problem Author: Paul Wild

Problem

Given some dice with various numbers of sides, output the possible sums of dice rolls in order of probability.

Problem Author: Paul Wild

Problem

Given some dice with various numbers of sides, output the possible sums of dice rolls in order of probability.

Solution

- Use dynamic programming, adding the dice one by one to the current probability distribution.
- If the current distribution is π and we add a k-sided die, then the new distribution π^{\prime} is

$$
\pi^{\prime}(n)=\frac{1}{k}(\pi(n-1)+\cdots+\pi(n-k))
$$

- Pitfall: beware of integer overflow when using counts instead of probabilities.

D: DnD Dice

Problem Author: Paul Wild

Easier Solution

- Notice that the probability distribution is always symmetrical, e.g. for two d 4 and one d 6 :

- This means we can find the final order without computing any probabilities!
- The solution is easiest to construct by starting at the extremes and taking turns moving inwards.

I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

Problem

Given at most $2 \cdot 10^{5}$ frogs with integral positions, and a list of at most 10^{6} frog-IDs (events). For each ID in the list, move the corresponding frog to the next free position.

I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

Problem

Given at most $2 \cdot 10^{5}$ frogs with integral positions, and a list of at most 10^{6} frog-IDs (events). For each ID in the list, move the corresponding frog to the next free position.

Solution

- Store for each position whether it is occupied or not in an array. Only positions up to $1.2 \cdot 10^{6}$ are relevant.

I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

Problem

Given at most $2 \cdot 10^{5}$ frogs with integral positions, and a list of at most 10^{6} frog-IDs (events). For each ID in the list, move the corresponding frog to the next free position.

Solution

- Store for each position whether it is occupied or not in an array. Only positions up to $1.2 \cdot 10^{6}$ are relevant.
- Now, simulate the events: For a jump of frog i, currently at position p, scan the "occupied"-array starting at p and seek the next free position.

I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

Problem

Given at most $2 \cdot 10^{5}$ frogs with integral positions, and a list of at most 10^{6} frog-IDs (events). For each ID in the list, move the corresponding frog to the next free position.

Solution

- Store for each position whether it is occupied or not in an array. Only positions up to $1.2 \cdot 10^{6}$ are relevant.
- Now, simulate the events: For a jump of frog i, currently at position p, scan the "occupied"-array starting at p and seek the next free position.
- Time complexity?

I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

Problem

Given at most $2 \cdot 10^{5}$ frogs with integral positions, and a list of at most 10^{6} frog-IDs (events). For each ID in the list, move the corresponding frog to the next free position.

Solution

- Store for each position whether it is occupied or not in an array. Only positions up to $1.2 \cdot 10^{6}$ are relevant.
- Now, simulate the events: For a jump of frog i, currently at position p, scan the "occupied"-array starting at p and seek the next free position.
- Time complexity? $\mathcal{O}\left(n^{2}\right)$ This is too slow (unless very very very optimised. . .)

I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

Problem

Given at most $2 \cdot 10^{5}$ frogs with integral positions, and a list of at most 10^{6} frog-IDs (events). For each ID in the list, move the corresponding frog to the next free position.

Solution

- Maintain the current positions of each frog and an ordered set S of currently free positions.

I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

Problem

Given at most $2 \cdot 10^{5}$ frogs with integral positions, and a list of at most 10^{6} frog-IDs (events). For each ID in the list, move the corresponding frog to the next free position.

Solution

- Maintain the current positions of each frog and an ordered set S of currently free positions.
- Now the events can be simulated quickly. For a jump of frog i, currently at position p :
- find $\min \left\{p^{\prime} \in S: p<p^{\prime}\right\}$ in $\mathcal{O}(\log |S|)$ using operations from the standard library.
- update S and the position of frog i

I: Investigating Frog Behaviour on Lily Pad Patterns
Problem Author: Michael Zündorf

Problem

Given at most $2 \cdot 10^{5}$ frogs with integral positions, and a list of at most 10^{6} frog-IDs (events). For each ID in the list, move the corresponding frog to the next free position.

Solution

- Maintain the current positions of each frog and an ordered set S of currently free positions.
- Now the events can be simulated quickly. For a jump of frog i, currently at position p :
- find $\min \left\{p^{\prime} \in S: p<p^{\prime}\right\}$ in $\mathcal{O}(\log |S|)$ using operations from the standard library.
- update S and the position of frog i
- Total time complexity: $\mathcal{O}(n \log |S|)$

C: Cosmic Commute

Problem Author: Wendy Yi

C: Cosmic Commute

Problem Author: Wendy Yi

Problem

Given an undirected, unweighted graph with $n \leq 2 \cdot 10^{5}$ vertices and a set W of k wormholes, what is the length of the shortest expected path from s to t ?

- By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
- You can use teleportation at most once.

C: Cosmic Commute

Problem Author: Wendy Yi

Problem

Given an undirected, unweighted graph with $n \leq 2 \cdot 10^{5}$ vertices and a set W of k wormholes, what is the length of the shortest expected path from s to t ?

- By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
- You can use teleportation at most once.

Solution

- If you enter wormhole w, the expected distance from s to t is

$$
\operatorname{dist}_{w}=\operatorname{dist}(s, w)+\frac{1}{k-1} \sum_{w^{\prime} \in W \backslash\{w\}} \operatorname{dist}\left(w^{\prime}, t\right)
$$

C: Cosmic Commute

Problem Author: Wendy Yi

Problem

Given an undirected, unweighted graph with $n \leq 2 \cdot 10^{5}$ vertices and a set W of k wormholes, what is the length of the shortest expected path from s to t ?

- By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
- You can use teleportation at most once.

Solution

- If you enter wormhole w, the expected distance from s to t is

$$
\operatorname{dist}_{w}=\operatorname{dist}(s, w)+\frac{1}{k-1} \sum_{w^{\prime} \in W \backslash\{w\}} \operatorname{dist}\left(w^{\prime}, t\right)=\operatorname{dist}(s, w)+\frac{1}{k-1}(S-\operatorname{dist}(w, t))
$$

with $S=\sum_{w^{\prime} \in W} \operatorname{dist}\left(w^{\prime}, t\right)$

C: Cosmic Commute

Problem Author: Wendy Yi

Problem

Given an undirected, unweighted graph with $n \leq 2 \cdot 10^{5}$ vertices and a set W of k wormholes, what is the length of the shortest expected path from s to t ?

- By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
- You can use teleportation at most once.

Solution

- If you enter wormhole w, the expected distance from s to t is

$$
\operatorname{dist}_{w}=\operatorname{dist}(s, w)+\frac{1}{k-1} \sum_{w^{\prime} \in W \backslash\{w\}} \operatorname{dist}\left(w^{\prime}, t\right)=\operatorname{dist}(s, w)+\frac{1}{k-1}(S-\operatorname{dist}(w, t))
$$

with $S=\sum_{w^{\prime} \in W} \operatorname{dist}\left(w^{\prime}, t\right)$

- Compute $\operatorname{dist}(s, w)$ and $\operatorname{dist}(w, t)$ for each wormhole w and sum S using two BFS from s and t.

C: Cosmic Commute

Problem Author: Wendy Yi

Problem

Given an undirected, unweighted graph with $n \leq 2 \cdot 10^{5}$ vertices and a set W of k wormholes, what is the length of the shortest expected path from s to t ?

- By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
- You can use teleportation at most once.

Solution

- If you enter wormhole w, the expected distance from s to t is

$$
\operatorname{dist}_{w}=\operatorname{dist}(s, w)+\frac{1}{k-1} \sum_{w^{\prime} \in W \backslash\{w\}} \operatorname{dist}\left(w^{\prime}, t\right)=\operatorname{dist}(s, w)+\frac{1}{k-1}(S-\operatorname{dist}(w, t))
$$

with $S=\sum_{w^{\prime} \in W} \operatorname{dist}\left(w^{\prime}, t\right)$

- Compute $\operatorname{dist}(s, w)$ and $\operatorname{dist}(w, t)$ for each wormhole w and sum S using two BFS from s and t.
- Determine the wormhole you should enter to minimize the expected distance.

C: Cosmic Commute

Problem Author: Wendy Yi

Problem

Given an undirected, unweighted graph with $n \leq 2 \cdot 10^{5}$ vertices and a set W of k wormholes, what is the length of the shortest expected path from s to t ?

- By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
- You can use teleportation at most once.

Solution

- It might be better to directly go from s to t without using any wormhole.

C: Cosmic Commute

Problem Author: Wendy Yi

Problem

Given an undirected, unweighted graph with $n \leq 2 \cdot 10^{5}$ vertices and a set W of k wormholes, what is the length of the shortest expected path from s to t ?

- By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
- You can use teleportation at most once.

Solution

- It might be better to directly go from s to t without using any wormhole.
- Output the minimum $\min \left\{\operatorname{dist}(s, t), \min _{w \in W}\left\{\operatorname{dist}_{w}\right\}\right\}$.

C: Cosmic Commute

Problem Author: Wendy Yi

Problem

Given an undirected, unweighted graph with $n \leq 2 \cdot 10^{5}$ vertices and a set W of k wormholes, what is the length of the shortest expected path from s to t ?

- By entering a wormhole, you are teleported to another wormhole chosen uniformly at random.
- You can use teleportation at most once.

Solution

- It might be better to directly go from s to t without using any wormhole.
- Output the minimum $\min \left\{\operatorname{dist}(s, t), \min _{w \in W}\left\{\operatorname{dist}_{w}\right\}\right\}$.

Running time: $\mathcal{O}(n+m)$

Problem Author: Paul Jungeblut

B: Balloon Darts

Problem Author: Paul Jungeblut

Problem

Given n points in the plane, determine if $k=3$ lines are sufficient to cover all points.

B: Balloon Darts

Problem Author: Paul Jungeblut

Problem

Given n points in the plane, determine if $k=3$ lines are sufficient to cover all points.

B: Balloon Darts

Problem Author: Paul Jungeblut

Problem

Given n points in the plane, determine if $k=3$ lines are sufficient to cover all points.

B: Balloon Darts

Problem Author: Paul Jungeblut

Problem

Given n points in the plane, determine if $k=3$ lines are sufficient to cover all points.

B: Balloon Darts

Problem Author: Paul Jungeblut

Problem

Given n points in the plane, determine if $k=3$ lines are sufficient to cover all points.

Solution

- If we have at most k points the answer is obviously Yes.
- If we select $k+1$ points, one line has to go through two of those points.

B: Balloon Darts

Problem Author: Paul Jungeblut

Problem

Given n points in the plane, determine if $k=3$ lines are sufficient to cover all points.

Solution

- If we have at most k points the answer is obviously Yes.
- If we select $k+1$ points, one line has to go through two of those points.
- Given k and $n>k$ points solve the problem recursively:
- Select $k+1$ points and try all lines through two points.
- For each line remove all covered points.
- Check recursively with $k-1$ and the remaining points.

B: Balloon Darts

Problem Author: Paul Jungeblut

Problem

Given n points in the plane, determine if $k=3$ lines are sufficient to cover all points.

Solution

- If we have at most k points the answer is obviously Yes.
- If we select $k+1$ points, one line has to go through two of those points.
- Given k and $n>k$ points solve the problem recursively:
- Select $k+1$ points and try all lines through two points.
- For each line remove all covered points.
- Check recursively with $k-1$ and the remaining points.
- Time complexity for $(k=3): n \cdot \prod_{i=1}^{k}\binom{i+1}{2}=18 \cdot n$

Problem Author: Paul Jungeblut

More Observations

- There must be a line which covers at least a third of all points.

B: Balloon Darts

Problem Author: Paul Jungeblut

More Observations

- There must be a line which covers at least a third of all points.
- There must be a line which covers at least half of all remaining points.

B: Balloon Darts

Problem Author: Paul Jungeblut

More Observations

- There must be a line which covers at least a third of all points.
- There must be a line which covers at least half of all remaining points.
- There must be a line which covers all remaining points.

B: Balloon Darts

Problem Author: Paul Jungeblut

More Observations

- There must be a line which covers at least a third of all points.
- There must be a line which covers at least half of all remaining points.
- There must be a line which covers all remaining points.

Solution 2

- Recursively select a random line through two points.
- At step k check if the chosen line covers $\frac{1}{k}$ of all points.

B: Balloon Darts

Problem Author: Paul Jungeblut

More Observations

- There must be a line which covers at least a third of all points.
- There must be a line which covers at least half of all remaining points.
- There must be a line which covers all remaining points.

Solution 2

- Recursively select a random line through two points.
- At step k check if the chosen line covers $\frac{1}{k}$ of all points.

Yes: recursively continue with $k-1$ and the remaining points.

B: Balloon Darts

Problem Author: Paul Jungeblut

More Observations

- There must be a line which covers at least a third of all points.
- There must be a line which covers at least half of all remaining points.
- There must be a line which covers all remaining points.

Solution 2

- Recursively select a random line through two points.
- At step k check if the chosen line covers $\frac{1}{k}$ of all points.

Yes: recursively continue with $k-1$ and the remaining points.
No: try another line or abort after sufficient many tries ($\sim 5 \cdot k$).

B: Balloon Darts

Problem Author: Paul Jungeblut

More Observations

- There must be a line which covers at least a third of all points.
- There must be a line which covers at least half of all remaining points.
- There must be a line which covers all remaining points.

Solution 2

- Recursively select a random line through two points.
- At step k check if the chosen line covers $\frac{1}{k}$ of all points.

Yes: recursively continue with $k-1$ and the remaining points.
No: try another line or abort after sufficient many tries $(\sim 5 \cdot k)$.

- Time complexity for $(k=3): n \cdot 5 \cdot k!=30 \cdot n$

F: Freestyle Masonry

Problem Author: Michael Zündorf

F: Freestyle Masonry

Problem Author: Michael Zündorf

Problem

Given the height field representing a wall, decide if you can add 2×1 blocks to create a wall of width exactly w and height exactly h.

F: Freestyle Masonry

Problem Author: Michael Zündorf

Problem

Given the height field representing a wall, decide if you can add 2×1 blocks to create a wall of width exactly w and height exactly h.

Solution

- Given a subgraph of a $w \times h$ grid graph, decide if it has a perfect matching
- Since the graph is a grid i.e. bipartite this can be done in $w \cdot h \cdot \sqrt{w \cdot h}$

F: Freestyle Masonry

Problem Author: Michael Zündorf

Problem

Given the height field representing a wall, decide if you can add 2×1 blocks to create a wall of width exactly w and height exactly h.

Solution?

- Given a subgraph of a $w \times h$ grid graph, decide if it has a perfect matching
- Since the graph is a grid i.e. bipartite this can be done in $w \cdot h \cdot \sqrt{w \cdot h}$
\Rightarrow This is much too slow

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Problem Author: Michael Zündorf

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column

F: Freestyle Masonry

Solution

- There is a greedy strategy which finds a perfect matching if one exists
- Go from left to right
- Place as many 1×2 blocks from the bottom to the top as fit in the current column
- If needed place 2×1 blocks on the top which go into the next column
- To simulate this efficiently, only store the height of the lowest brick coming from the left
- This value either increases or decreases by 1 if we go to the next column

K: Kaldorian Knights

Problem Author: Marcel Wienöbst

K: Kaldorian Knights

Problem Author: Marcel Wienöbst

Problem

Given a_{1}, \ldots, a_{k}, compute how many permutations of $(1, \ldots, n)$ do not have $1,2, \ldots, \sum_{i=1}^{l} a_{i}$ (in some order) in the first $\sum_{i=1}^{l} a_{i}$ places (for some $I=1, \ldots k$).

K: Kaldorian Knights

Problem Author: Marcel Wienöbst

Problem

Given a_{1}, \ldots, a_{k}, compute how many permutations of $(1, \ldots, n)$ do not have $1,2, \ldots, \sum_{i=1}^{l} a_{i}$ (in some order) in the first $\sum_{i=1}^{l} a_{i}$ places (for some $I=1, \ldots k$).

Solution

- Denote the number of such permutations by $p(n, k)$ and let $A(i)=\sum_{j=1}^{i} a_{j}$.

K: Kaldorian Knights

Problem Author: Marcel Wienöbst

Problem

Given a_{1}, \ldots, a_{k}, compute how many permutations of $(1, \ldots, n)$ do not have $1,2, \ldots, \sum_{i=1}^{\prime} a_{i}$ (in some order) in the first $\sum_{i=1}^{l} a_{i}$ places (for some $I=1, \ldots k$).

Solution

- Denote the number of such permutations by $p(n, k)$ and let $A(i)=\sum_{j=1}^{i} a_{j}$.
- Following the definition, we can count $p(n, k)$ as the number of all permutations minus the forbidden ones.

K: Kaldorian Knights

Problem Author: Marcel Wienöbst

Problem

Given a_{1}, \ldots, a_{k}, compute how many permutations of $(1, \ldots, n)$ do not have $1,2, \ldots, \sum_{i=1}^{l} a_{i}$ (in some order) in the first $\sum_{i=1}^{l} a_{i}$ places (for some $I=1, \ldots k$).

Solution

- Denote the number of such permutations by $p(n, k)$ and let $A(i)=\sum_{j=1}^{i} a_{j}$.
- Following the definition, we can count $p(n, k)$ as the number of all permutations minus the forbidden ones.
- To avoid subtracting forbidden permutations more than once, we use a recursive formulation:

$$
p(n, k)=n!-\sum_{i=1}^{k}(n-A[i])!\times p(A[i], i-1)
$$

K: Kaldorian Knights

Problem Author: Marcel Wienöbst

Problem

Given a_{1}, \ldots, a_{k}, compute how many permutations of $(1, \ldots, n)$ do not have $1,2, \ldots, \sum_{i=1}^{l} a_{i}$ (in some order) in the first $\sum_{i=1}^{l} a_{i}$ places (for some $I=1, \ldots k$).

Solution

- Denote the number of such permutations by $p(n, k)$ and let $A(i)=\sum_{j=1}^{i} a_{j}$.
- Following the definition, we can count $p(n, k)$ as the number of all permutations minus the forbidden ones.
- To avoid subtracting forbidden permutations more than once, we use a recursive formulation:

$$
p(n, k)=n!-\sum_{i=1}^{k}(n-A[i])!\times p(A[i], i-1)
$$

- $p(A[i], i-1)$ counts the forbidden prefixes of length $A[i]$, which do not themselves contain a shorter forbidden prefix.

K: Kaldorian Knights

Problem Author: Marcel Wienöbst

Problem

Given a_{1}, \ldots, a_{k}, compute how many permutations of $(1, \ldots, n)$ do not have $1,2, \ldots, \sum_{i=1}^{\prime} a_{i}$ (in some order) in the first $\sum_{i=1}^{l} a_{i}$ places (for some $I=1, \ldots k$).

Solution

- Denote the number of such permutations by $p(n, k)$ and let $A(i)=\sum_{j=1}^{i} a_{j}$.
- Following the definition, we can count $p(n, k)$ as the number of all permutations minus the forbidden ones.
- To avoid subtracting forbidden permutations more than once, we use a recursive formulation:

$$
p(n, k)=n!-\sum_{i=1}^{k}(n-A[i])!\times p(A[i], i-1)
$$

- $p(A[i], i-1)$ counts the forbidden prefixes of length $A[i]$, which do not themselves contain a shorter forbidden prefix.
- The recursion can be evaluated using dynamic programming in time $\mathcal{O}\left(k^{2}\right)$.

J: Japanese Lottery

J: Japanese Lottery

Problem Author: Michael Zündorf

Problem

Given a game of Amida-kuji, i.e. k legs and some horizontal bars which change over time, decide how many horizontal bars you need to remove to connect the i th start to the i th end.

J: Japanese Lottery

Solution

- The game state can be represented by a permutation.
- Adding/removing a bar always changes the number of cycles in the permutation by 1.
- We want to build the identity permutation, which has k cycles.

J: Japanese Lottery

Problem Author: Michael Zündorf

Solution

- The game state can be represented by a permutation.
- Adding/removing a bar always changes the number of cycles in the permutation by 1.
- We want to build the identity permutation, which has k cycles.
- There is always a bar whose addition/removal increases the number of cycles.
\Rightarrow The answer is k minus the number of cycles.

J: Japanese Lottery

Solution

- The game state can be represented by a permutation.
- Adding/removing a bar always changes the number of cycles in the permutation by 1.
- We want to build the identity permutation, which has k cycles.
- There is always a bar whose addition/removal increases the number of cycles.
\Rightarrow The answer is k minus the number of cycles.
- Notice that the actual layout of the bars is irrelevant.
\Rightarrow We only need to maintain the current permutation (for example with a Segment Tree).

H: Highway Combinatorics

Problem Author: Michael Zündorf

H: Highway Combinatorics

Problem Author: Michael Zündorf

Problem

Find a subgraph of a 2×200 grid which has exactly n perfect matchings modulo $10^{9}+7$.

H: Highway Combinatorics

Problem Author: Michael Zündorf

Problem

Find a subgraph of a 2×200 grid which has exactly n perfect matchings modulo $10^{9}+7$.

Observations

- Some edges are contained in every matching
- The remaining edges are matched in grids of the form $2 \times m_{i}$
- A $2 \times m$ grid has fibonacci (m) perfect matchings

H: Highway Combinatorics

Problem Author: Michael Zündorf

Problem

Find a subgraph of a 2×200 grid which has exactly n perfect matchings modulo $10^{9}+7$.

Observations

- Some edges are contained in every matching
- The remaining edges are matched in grids of the form $2 \times m_{i}$
- A $2 \times m$ grid has fibonacci (m) perfect matchings
- This is equivalent to: find k Fibonacci numbers,
- whose sum is less than 200,
- whose product is congruent to n modulo $10^{9}+7$.

H: Highway Combinatorics

Problem Author: Michael Zündorf

Problem

- Find a (multi)set of positive Integers S, such that
- $\sum_{i \in S} i<200$, and
- $\prod_{i \in S} f i b(i) \equiv n \bmod 10^{9}+7$.

Solution

- Meet in the Middle

H: Highway Combinatorics

Problem Author: Michael Zündorf

Problem

- Find a (multi)set of positive Integers S, such that
- $\sum_{i \in S} i<200$, and
- $\prod_{i \in S} f i b(i) \equiv n \bmod 10^{9}+7$.

Solution

- Meet in the Middle
- Repeat a times: Randomly pick a multiset S_{1} with $\sum_{i \in S_{1}} i<100$ and store it indexed by $\prod_{i \in S_{1}}$ fib(i)

H: Highway Combinatorics

Problem Author: Michael Zündorf

Problem

- Find a (multi)set of positive Integers S, such that
- $\sum_{i \in S} i<200$, and
- $\prod_{i \in S} f i b(i) \equiv n \bmod 10^{9}+7$.

Solution

- Meet in the Middle
- Repeat a times: Randomly pick a multiset S_{1} with $\sum_{i \in S_{1}} i<100$ and store it indexed by $\prod_{i \in S_{1}}$ fib(i)
- Repeat b times: Randomly pick a multiset S_{2} with $\sum_{i \in S_{2}} i<100$ and check if some S_{1} with $\prod_{i \in S_{1}} f i b(i) \equiv n \cdot\left(\prod_{i \in S_{2}} f i b(i)\right)^{-1}$ has been stored
- If yes, we found a solution because $\prod_{i \in S_{1} \cup S_{2}} f i b(i) \equiv n$ and $\sum_{i \in S_{1} \cup S_{2}} i<200$

H: Highway Combinatorics

Problem Author: Michael Zündorf

Problem

- Find a (multi)set of positive Integers S, such that
- $\sum_{i \in S} i<200$, and
- $\prod_{i \in S} f i b(i) \equiv n \bmod 10^{9}+7$.

Solution

- Meet in the Middle
- Repeat a times: Randomly pick a multiset S_{1} with $\sum_{i \in S_{1}} i<100$ and store it indexed by $\prod_{i \in S_{1}}$ fib(i)
- Repeat b times: Randomly pick a multiset S_{2} with $\sum_{i \in S_{2}} i<100$ and check if some S_{1} with $\prod_{i \in S_{1}} f i b(i) \equiv n \cdot\left(\prod_{i \in S_{2}} f i b(i)\right)^{-1}$ has been stored
- If yes, we found a solution because $\prod_{i \in S_{1} \cup S_{2}} f i b(i) \equiv n$ and $\sum_{i \in S_{1} \cup S_{2}} i<200$
- For $a=b=10^{6}$ we test (up to) 10^{12} combinations, but there are only $10^{9}+7$ possible outcomes \Rightarrow We have to be really unlucky to not find a combination for some fixed n

H: Highway Combinatorics

Problem Author: Michael Zündorf

Problem

- Find a (multi)set of positive Integers S, such that
- $\sum_{i \in S} i<200$, and
- $\prod_{i \in S} f i b(i) \equiv n \bmod 10^{9}+7$.

Solution

- Meet in the Middle
- Repeat a times: Randomly pick a multiset S_{1} with $\sum_{i \in S_{1}} i<100$ and store it indexed by $\prod_{i \in S_{1}}$ fib(i)
- Repeat b times: Randomly pick a multiset S_{2} with $\sum_{i \in S_{2}} i<100$ and check if some S_{1} with $\prod_{i \in S_{1}} f i b(i) \equiv n \cdot\left(\prod_{i \in S_{2}} f i b(i)\right)^{-1}$ has been stored
- If yes, we found a solution because $\prod_{i \in S_{1} \cup S_{2}} f i b(i) \equiv n$ and $\sum_{i \in S_{1} \cup S_{2}} i<200$
- For $a=b=10^{6}$ we test (up to) 10^{12} combinations, but there are only $10^{9}+7$ possible outcomes
\Rightarrow We have to be really unlucky to not find a combination for some fixed n
- Special case: $n=0$, find a graph without a perfect matching

A: Adolescent Architecture 2

Problem Author: Paul Wild

A: Adolescent Architecture 2

Problem Author: Paul Wild

Problem

Find the number of winning moves in a block stacking game:

- There are multiple stacks of blocks.
- Players alternate placing blocks on top of these.
- The first player unable to move loses.
- Each block must fit strictly within the one below it.
- There are three shapes with blocks of any integer size: circles, triangles, squares.

A: Adolescent Architecture 2

Problem Author: Paul Wild

Subproblem

Given two blocks, determine if one of them fits inside the other.

A: Adolescent Architecture 2

Problem Author: Paul Wild

Subproblem

Given two blocks, determine if one of them fits inside the other.

Solution to Subproblem

- Consider each pair of shapes $(\{\triangle, \square, \bigcirc\})$ separately.

A: Adolescent Architecture 2

Problem Author: Paul Wild

Subproblem

Given two blocks, determine if one of them fits inside the other.

Solution to Subproblem

- Consider each pair of shapes $(\{\triangle, \square, \bigcirc\})$ separately.
- For instance, if \square_{m} is a square with side length m and \bigcirc_{n} is a circle with radius n, then

$$
\square_{m} \text { fits inside } \bigcirc_{n} \Longleftrightarrow m<\sqrt{2} \cdot n
$$

A: Adolescent Architecture 2

Problem Author: Paul Wild

Subproblem

Given two blocks, determine if one of them fits inside the other.

Solution to Subproblem

- Consider each pair of shapes $(\{\triangle, \square, \bigcirc\})$ separately.
- For instance, if \square_{m} is a square with side length m and \bigcirc_{n} is a circle with radius n, then \square_{m} fits inside $\bigcirc_{n} \Longleftrightarrow m<\sqrt{2} \cdot n$.
- Similarly, for each $S, T \in\{\triangle, \square, \bigcirc\}$, there exists some $\alpha_{S, T}$ such that S_{m} fits inside $T_{n} \Longleftrightarrow m<\alpha_{S, T} \cdot n$.

A: Adolescent Architecture 2

Problem Author: Paul Wild

Subproblem

Given two blocks, determine if one of them fits inside the other.

Solution to Subproblem

- Consider each pair of shapes $(\{\triangle, \square, \bigcirc\})$ separately.
- For instance, if \square_{m} is a square with side length m and \bigcirc_{n} is a circle with radius n, then \square_{m} fits inside $\bigcirc_{n} \Longleftrightarrow m<\sqrt{2} \cdot n$.
- Similarly, for each $S, T \in\{\triangle, \square, \bigcirc\}$, there exists some $\alpha_{S, T}$ such that S_{m} fits inside $T_{n} \Longleftrightarrow m<\alpha_{S, T} \cdot n$.
- These numbers can be found using high school geometry.

A: Adolescent Architecture 2

Problem Author: Paul Wild

Subproblem

Given two blocks, determine if one of them fits inside the other.

Solution to Subproblem

- Consider each pair of shapes $(\{\triangle, \square, \bigcirc\})$ separately.
- For instance, if \square_{m} is a square with side length m and \bigcirc_{n} is a circle with radius n, then \square_{m} fits inside $\bigcirc_{n} \Longleftrightarrow m<\sqrt{2} \cdot n$.
- Similarly, for each $S, T \in\{\triangle, \square, \bigcirc\}$, there exists some $\alpha_{S, T}$ such that S_{m} fits inside $T_{n} \Longleftrightarrow m<\alpha_{S, T} \cdot n$.
- These numbers can be found using high school geometry.
- Pitfall: Near misses are possible, so use extended precision (long double, BigDecimal, Decimal).

A: Adolescent Architecture 2

Problem Author: Paul Wild

Solution

- This is a combinatorial game where for each stack we only care about its topmost block.

A: Adolescent Architecture 2

Problem Author: Paul Wild

Solution

- This is a combinatorial game where for each stack we only care about its topmost block.
- Use the Sprague-Grundy theorem to assign each block B a Grundy value $G(B)$.

A: Adolescent Architecture 2

Problem Author: Paul Wild

Solution

- This is a combinatorial game where for each stack we only care about its topmost block.
- Use the Sprague-Grundy theorem to assign each block B a Grundy value $G(B)$.
- By careful analysis and/or dynamic programming we can find closed forms:

$$
G\left(\triangle_{n}\right)=n-1 \quad G\left(\square_{n}\right)=\lfloor(\sqrt{6}-\sqrt{2}) n\rfloor \quad G\left(\bigcirc_{n}\right)= \begin{cases}2, & \text { if } n=1 \\ \lfloor\sqrt{3} n\rfloor, & \text { otherwise }\end{cases}
$$

A: Adolescent Architecture 2

Problem Author: Paul Wild

Solution

- This is a combinatorial game where for each stack we only care about its topmost block.
- Use the Sprague-Grundy theorem to assign each block B a Grundy value $G(B)$.
- By careful analysis and/or dynamic programming we can find closed forms:

$$
G\left(\triangle_{n}\right)=n-1 \quad G\left(\square_{n}\right)=\lfloor(\sqrt{6}-\sqrt{2}) n\rfloor \quad G\left(\bigcirc_{n}\right)= \begin{cases}2, & \text { if } n=1 \\ \lfloor\sqrt{3} n\rfloor, & \text { otherwise }\end{cases}
$$

- A position is losing iff the bitwise XOR of Grundy values of the stacks is 0 .

A: Adolescent Architecture 2

Problem Author: Paul Wild

Solution

- This is a combinatorial game where for each stack we only care about its topmost block.
- Use the Sprague-Grundy theorem to assign each block B a Grundy value $G(B)$.
- By careful analysis and/or dynamic programming we can find closed forms:

$$
G\left(\triangle_{n}\right)=n-1 \quad G\left(\square_{n}\right)=\lfloor(\sqrt{6}-\sqrt{2}) n\rfloor \quad G\left(\bigcirc_{n}\right)= \begin{cases}2, & \text { if } n=1 \\ \lfloor\sqrt{3} n\rfloor, & \text { otherwise }\end{cases}
$$

- A position is losing iff the bitwise XOR of Grundy values of the stacks is 0 .
- For each stack, compute the Grundy value needed to create a losing position.

A: Adolescent Architecture 2

Problem Author: Paul Wild

Solution

- This is a combinatorial game where for each stack we only care about its topmost block.
- Use the Sprague-Grundy theorem to assign each block B a Grundy value $G(B)$.
- By careful analysis and/or dynamic programming we can find closed forms:

$$
G\left(\triangle_{n}\right)=n-1 \quad G\left(\square_{n}\right)=\lfloor(\sqrt{6}-\sqrt{2}) n\rfloor \quad G\left(\bigcirc_{n}\right)= \begin{cases}2, & \text { if } n=1 \\ \lfloor\sqrt{3} n\rfloor, & \text { otherwise }\end{cases}
$$

- A position is losing iff the bitwise XOR of Grundy values of the stacks is 0 .
- For each stack, compute the Grundy value needed to create a losing position.
- For each shape, check whether a block with that Grundy value exists and constitutes a legal move.

A: Adolescent Architecture 2

Problem Author: Paul Wild

Solution

- This is a combinatorial game where for each stack we only care about its topmost block.
- Use the Sprague-Grundy theorem to assign each block B a Grundy value $G(B)$.
- By careful analysis and/or dynamic programming we can find closed forms:

$$
G\left(\triangle_{n}\right)=n-1 \quad G\left(\square_{n}\right)=\lfloor(\sqrt{6}-\sqrt{2}) n\rfloor \quad G\left(\bigcirc_{n}\right)= \begin{cases}2, & \text { if } n=1 \\ \lfloor\sqrt{3} n\rfloor, & \text { otherwise }\end{cases}
$$

- A position is losing iff the bitwise XOR of Grundy values of the stacks is 0 .
- For each stack, compute the Grundy value needed to create a losing position.
- For each shape, check whether a block with that Grundy value exists and constitutes a legal move.
- Total runtime: $\mathcal{O}(n)$.

Random facts

Jury work

- 275 commits

Random facts

Jury work

- 275 commits
- 773 secret test cases (≈ 59.5 per problem)

Random facts

Jury work

- 275 commits
- 773 secret test cases (≈ 59.5 per problem)
- 133 jury solutions

Random facts

Jury work

- 275 commits
- 773 secret test cases (≈ 59.5 per problem)
- 133 jury solutions
- The minimum number of lines the jury needed to solve all problems is

$$
20+13+19+7+2+6+2+21+18+19+10+3+1=141
$$

On average 10.8 lines per problem

